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ABSTR.A Cr

A standing-wave acoustic parametric source (SWAPS) is proposed as a small,
low-frequency underwater sound source. SWAPS i3 a liquid-filled cylindrical tube
which is driven at one end by a piston transducer and terminated on the other end
by a pressure-release reflector to form a resonant cavity. The piston is driven simul-
taneously at two high frequencies w, and o2 which are at or near resonance for
thie plane-wave mode in the cavity. The resulting large-amplitude primary sound
waves mix nonlinearly to produ e secondary sound waves. The secondary wave at
the low difference frequency w1 - W2 passes easily through the relatively thin tube
walls and radiates to the far field. In this report the far-field radiation at the dif-
ference frequency is calculated by use of the virtual-source-density method. Two
special cases are discussed: in the first the high freqaencies are neighboring reso-
iance frequencies so that the length of SWAPS is nearly 1/2 wavelength at the dif-
teence frequency in the liquid in the tube; in the second both high frequencies lie
within the bandwidth of a single resonance ,f the cavity; in this second case SWAPS
can he as short as 1/4 wavelength at the high frequency. The results are expressed
in terms of a quality factor that describes the resonance properties of the system
when difference-frec,-.:-ncy radiation is being generated. This quality factor, which
nuqt be detrmined experimentally, is an input to the mathematical model. Com-

parison is made to a traveling-wave acoustic parametric source which employs the
same piston transducer as a pump.
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MATHEMATICAL MODEL FOR A STANDING-WAVE ACOUSTIC
PARAMETRIC SOURCE (SWAPS)

INTRODUCTION

Within the past decade the generation of narrow-beam, low-frequency acoustic radia-
tion from a relatively small piston source has been accomplished by the use of the traveling-
wave acoustic parametric source. Here the piston source is driven simultaneously by two
primary signals of high frequency w1 and W2 . During subsequent propagation a low-
frequency secondary wave at the lifference frequency c Il - W2 is generated by the non-
linear interaction of the primary sound waves in the water medium. This so-called endfire
array, first proposed by Westervelt [1] and confirmed experimentaily by Bellin and Beyer
[21, has been the subject of extensive theoretical and experimental investigation by Berktay
f3] and others [4-6,. The desirability of such a device is enhanced by the lack of side-
lobes in the radiation phttern and by the relatively large oandwidth at the difference
frequency. Its chief disadvantage is the low efficiency of the conversion due to the absorp-
tion and diffraction of the primary waves and the nonlinear generation and subsequet t
absorption of both the iKrmonics of the primary waves and the sum frequency W1 + 012.

This limitation is unlike.y to be elimina.,d by future work.

In 1965 Dunn, Kuljis, and Welsby [7] briefly examined the generation jf a 47-kHz
sound from two primary waves at 326 kI47, and 373 kHz in a spherical-standing-wave
system. However, they were prim.1rily concerned with subharmonic generation when
cavitation is present and did not pursue the matter further.

In this report we describe a low-frequency sound source called a standing-wave acoustic
parametric source (SWAPS) which increases the nonlinear conversion by "folding" the
traveling wave to produce a standing wave [81. This is accomplished by ,ise of a closed
cylindrical tube that is near resonance for both primar sound waves. Because the parametric
effect is inherently nonlinear, an increased generation of sound at the difference frequency
results. This difference frequency passes easily through the relatively thin tube walls ald
ends and radiates to the far field. We calculate the far-field radiation from SWAPS by use
of the virtual-source-densit, method used by Westervelt [1]. Inc'uded in our discussion
is a comparison to a traveling-wave acoustic parametric source which employs the same
piston transducer to generate the primary waves.

DESCRIPTION OF SWAPS

SWAPS is envisioned to be a liquid-filled circular cylindrical tube or cavity of inner
radius a and lengtn k with a piston transducer mounted on one end and a pressure-release
reflector m:,iunted on the other end (Fig. 1). The piston is driven simultaneously at the two
primary frequencies w, and W12. The walls are made sufficiently rigid to allow predominantly
plane-wave propagation of the primaries. Both o., and W2 are chosen to be near a resonance
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F~ig. 1 -Standing-wave acoustic parametric source

frequency of the plane-wave mode of the cavity. Two special cases arc consi~ered: (1)
w, and W2 are neighbor. ig resonance frequencies; (2) wli is close enough to w2 so that
they both hie wvell within the bandwidth of a single resonance frequency. The resulting
primary wvaves present in this standing-wave sys,,em now interact nonlinearly to produce
sumi and difference components as wvell as va-ious harmonic components. The difference
frequency 'Wd W1 - v.2 is chosen to be m ich smaaller than either primary frequency.
Thus the relatively thin walls and ends of the tube caii also be made nearly tiansparent
acoustically at the difference freqve.acy, so that the difference frequency radiates unimpeded
to the far field.

1 ihe use of a pressire-releL,-e rpfector should inhibit the growth of both the sum
friquei'cy and harmonic-, of the pritriaries. This occurs because of the 1800 phase shift
that each frequency component in a plane wave undergoes upon reflection from a pressure-
release boundary. Consider a sinusoidal wave leaving the piston. As it propagates, harmonics
are generated with a fixed phase relationship to the fundamental. Ignoring dispersion, this 4
phase relationship is maintained while the "most stable" waveform, the sawtooth, is
approached. When the distorted vave is reflected from the pr--ssure rele;-.;e end, the 1800
phase shift prodluces a "leost st,-.!le" waveform or reverse sawtooth During ubsequent
propagation back to the piston, new harm-ornic generation cancels the existing harmonic
conil&&-, and the waveform ends to retian to a sinusoid. The sumn frequency WS Wi +
(02 will be close in frequency to the second harmonic of both primaries and will be in-
hibited in a similar manner. In addition, any dispersion that exists in the tube will tend
to inhibit the growth of harmonics and the bumn frequency, since it will also tend to destroy
the stable phase relationship between the various components. Thus competing nonlinear
interactions are inhibited, and more primary energy remains available for generation of the
difference frequency.

The liquid .ised in SWAPS can be chosen to optimize the performance. For example
an ideal liquid mn ght have a characteristic acoustic impedance equal io that of the surround-
i g water mediun. so that the difference frequency is transmitted ettactively into the water,

have a high degree of nonlinearity to enhance the interaction o.f the p~rimaries, have small

€J

attenuatio 1 of the primaries due to linear loss mechanisms such as viscous absorption in

/II
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order to enhance the resonance prop ,rties oO the cavity, have a high cavitation threshold
(if cavitation proves to be undesirablu), and have a low sound speed to maximize the
acoustic size of the interaction volume.

MATHEMATICAL MODEL OF SWAPS

The basic equations of acoustics describing the conservation of mass, momentum,
and energy and the equation of state of the medium are inherently nonlinear. Under the
assumptions of infinitesimal wave motion, the nonlinear terms can be neglected, and the
linear wave equation is obtained. Fortunately, for most applications, infinitesimal theory
is quite adequate. However, when the wave motion is of large amplitude so that the
acoustic particle velocity is not negligible when compared with the sound speed, the non-
linear terms must bp retained. j. is the existence of these nonlinear terms that letads to
mixing of the primay waves to produce secondary waves which consist of harmnuics of
each primary frequency component and intermodulation components such as sum and
difference frequencips. References 9 through 12 giv. detailed discussions of nonlinear
acoustics.

Because of the intractable nature of the nonlinear equations one usually makes a
number of simplifying assumptions or idealizations to obtain a solution. For example, if
one assumes that the secondary waves are small compared with the primary waves, first-
order perturbation theory can be used. Such an approach was used by Westervelt [11 n
describing the parametric acoustic array, which we call a traveling-wave acoustic parametric
source and apply the acronym TWAPS.

Westervelt used as his starting point the exact equation for arbitrary fluid motion
derived by Lighthill [131. Using perturbation theory a,:d neglecting viscosity, he derived
the inhomogeneous wave equation

oq_
-12p -- P t- =_f' (1)

where P is the acoustic pressure of the secondary wave which includes the harmonic and
intermodulation components and p0 is the equilibrium mass density. The virtual-simple-
source-strength density q which results from the primary-wave pressure Pi is given by

2, 4 (p.), (2)

where c0 is the sound speed for infinitesimal waves. The parameter P is defined by

1+po 2p - (3)

or

r =I + (4)
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%here the nonlinearity parameter B/A is a measure of the nonlinear response of the liquid
n.edium. For water at 200, B/A is about 5. Other liquids have values of B/A that lie
b .tween about 4 and 11 [ii].

Westervelt assumed a primary wave consisting of two collinated collinear plane waves
of frequencies u)1 and W2 emanating from a common source. He reintroduced the effects
of viscosity in an ad hoc way by assuming that the primaries are attenuated by the usual
absorption coefficient of linear acoustics. Substituting this primary wave into Eq. (2) led
to a virtual-source density with the frequency components 2W1 , 2 2 , ;~, and Wd. He
then obtained thu far-field radiation at the difference frequency by using the wd virtual-
source-density term to-obtain the inhomogeneous term f in Eq. (1) and by integrating
this expression times the free space Green's function over the cylindrical volume containing
the primary waves. He assumed that the difference frequency is low enough so that its
attenuation is negligible. This model assumes-that the transfer of energy from the primaries
into secondary waves such as harmonics and sum and difference components is small
enough so that nonlinear attenuation of the prima-ies is negligible. Recently attempts
have been made to modify the primary-wave distribution to approximate the nonlinea-
attenuation due to harmonic generation [6]. At large primary amplitudes (or at very low
primary frequencies), this loss mechanism will dominate linear absorption.

We now calculate the difference frequency radiated from SWAPS into the far field
by the perturuation approach of Westervelt. First we obtain the primary-wave distribution.
The piston end of SWAPS is assumed to be vibrating with a normal velocity V given by

V = V1 sin C01 t + V2 sin w02 t. (5)

The axis of the tube is taken to be the z ax, with the piston at z = 0. The reflector end
of the tube is pressure released, so that

Pi = Oat z = . (6)

The walls of the tube are assumed rigid at w, and W2 , and plane wave motion is assumed.
The linear attenuation coefficients for the primaries in the tube a, and Q2 include contri-
butions from such linear loss mechanisms as boundary-layer and mainstream-viscous
attenuation. The solution to the one-dimensional linear wave equation subject to the
boundary conditions given in Eqs. (5) and (6) is given by

Pi =P 1 +P 2

= poV, R co sin [(Q - z) (k, cz1p0°V 1 Re (k 1 - io l ) cos [Q(k 1 - ia1 )]

(7)
+ a similar term for P 2 ,

where Re indicates the real part of the expression in braces and k is the wavenumber.

We now assume that the lineur attenuation is small, so that

l <<1, (8)
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and

a 2 k <K 1. (8)

In addition we assume that the length R is such that both w1 and C02 are equal to or
nearly equal to a resonance frequency con of the standing-wave system, that is,

C01 - Wn << Con

and (9)

(o - 02 < < 0)n,

where it is assumed that co, and C02 are located on opposite sides of o 1.. When the small
dispersion and attenuation that will exist in the tube are neglected, the resonance fre-
quencies con are given by

(2n + 1)7rc 0  (30)
Con - 2Q (

where the integer n indicates the order of the resonance and co is the free-field sound

speed for the liquid in SWAPS.

With these assumptions the linear solution can be written in the simplified form

Pi "- p0c0 [V 1 A 1 sin (0)lt - 01 ) cos k1z + V2A 2 sin (0) 2 t - 2) cos k 2 z], (11)

where the amplitude and phase factors are given by

1A1 = Al {1 + [(C01 - 0,)/( 1c0)] 2} 1/2

and (12)

01 = tan-' [(cM - co.)(alco)],

and smilarly for A 2 and 0 2 . At resonance, co, = con and A 1 ,.ad A 2 have their maximum
valu s of 1/oa1Q and 1/U2.2 respectively. From Eqs. (12) we see that the conditions that
co, and (02 lie within the bandwidth of the resonance at ()n can be expressed as

lc -o 0 1

and (13)

cot? 0-Co
0(2C0
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If the amplitudes of the primary waves were small and if the assumed boundary
conditions at the walls and ends were met, Eq. (11) would be a good representation of
the primary waves. However these primar T waves would not produce much difference-
frequency radiation. Therefore, if signific. nt difference-frequency radiation is desired,
then the amplitudes of the primaries must be large and the infinitesimal theory used to
obtain Eq. (11) is no longer valid. Even i the pressure-release reflector works perfectly,
the harmonics of the primaries as well as other high-frequency intermodulation components
cannot now be treated as small secondary waves which have a negligible effect on theprimary waves and can be calculated from first-order perturbation theory. Thus we

modify the primary-wave distribution to include these high-frequency components and still
consider the difference frequency Cod to be the secondary wave. Since we are interested
in only Wd, we need to know only the distribution of the fundamental components of
the primaries. We assume that this distribution is given by

Pi = Poco[V 1Q 1 sin (w, t -¢1) cos k 1 z + V2 Q2 sin (0)2t -02) cos k 2 z, (14)

where the quality factors Q1 and Q2 contain the dependence given by Eqs. (12) and an
additional unspecified factor representing the loss of energy from the fundamental com-
ponents into the generation of high-frequency intermodulation components. We also include
in Q1 and Q2 the loss of energy from co, and w 2 due to generation of the difference
frequency itself. This apparent departure from second-order perturbation theory is
justified by the fact that the difference frequency does not build up in the standing-wave
system but instead radiates to the far field. Consequently the amount of difference fre-
quency present in the region occupied by the primaries can be small compared with the
primaries even if a significant amount of difference frequency is radiated. Therefore Q,
and Q2 determine the amplitudes of the primaries during difference-frequency generation
and are each a function of both piston velocity components V1 and V2 . To simplify the
analysis, we assume that V1 is equal to V2 and that co, - con = Wn - C02 = cOd/ 2 when
both primaries lie within a single resonance. Then since o o W- o, so that , 2
we have A 1 - A 2 , Q1  Qj = Q, and 01 = -_2 0. The primary distribution becomes

Pi = p0 c0 VQ [sin (cilt -- 0) cos k 1 z + sin (w 2 t + 00) cos k 2 z ] . (15)

Thus we require that the behavior of Q as a function of V be determined experimentally
as an input to this mathematical model.

Substituting the expression for Pi into Eqs. (1) and (2) and retaining only the terms
that ontribute to the difference frequency, we have

P q d V2Q2k2 [cos (wdt - kdZ - 2 0) + cos (COdt + kdZ - 20 0 )fPOat- 4

(16)

+ cos (codt - ksz - 20) + cos (codt + ksz - 20 0 )].

It can be shown that the last two terms do not contribute significantly to the far field,
when os > > cod and ks >> kd. The difference-frequency pressure at the field point R
is given by
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- 1 fe-idfR - TI
Pd() = -1 dv, (17)

where aie integration is over the circular cylindrical volume of radius a and length £ and
where r is the source point (Fig. 2). We assume for thepresent that SWAPS is filled wth

water (or whatever the surrounding liquid is). We take R to be in the far field and use
the asymptotic form for the free-space Green's function. The L'ee-spacu Green's function
is appropriate for the difference frequency, since we assumed that the walls and ends of
SWAPS are acoustically transparent at GWd. Neglecting the last two terms in Eq. (16),
converting to complex notation, and choosing cylindrical coordinates (a, , z) for the
source point and spherical coordinates (R, 0, 0) for the field point, we obtain the expression

PdI(R, 0) = SF'(0) R ' (18)

with

e(0) , [VsinO cos( ? )+0zeos9 (e-idz + e"d z ) a daddz,
16T 0 o 0

(19)

where S is the source levei and F(0) is ,he far-field pressure distributiun. The integration
over fl of the factor depending on ( and a produces 21rJo(ka sin 0), where J 0 is the
zero-order Bessel function, and subsequent integration over u produces the aperture factor

FIL!.D POINT
(R, 0,0)

R R-r

Y Fig. 2 - Geometry of the problem
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Hd 27ra Jl (kda sin 0). (20)

We usually choose kda sin 0 << 1, so that J, can be rep;.-"ed by its lowest order term

and H has its maximum value

H - 7ra 2 . (21)

Integration over z of the ;emaining factors produces two oppositely directed end-fired-
array terms that are kdk out of phase with each other:

E(0) = e k s i kkcos2 (0/2)]1 + Jsin [kdQ sin2 (0/2)] '.(22)
Vkd .cos 2 (0/2) J d2 sin2 (0/ "

The second term in braces can be obtained from the first term in braces by replacing 0
with 1800 - 0. Collecting terms, we obtei the source level

S = rp0 VCQ2k2a2 2 IE(0)1/16 (23)

ailt' the far-field pressure distribution

JF(0)J1 sin 0). 1 sin2[kdQ cos2 (0/2)] sin 2 [kdQ sin2 (0/2)]
Jl~kda sin20) IE())]

(1/2)kda sin 0 kdQ cos 4 (0 2) sin 4 (0/2)

(24)
sin [kdQ sin 2 (0/2)] sin [kZdkCOs 2 (0/2)] 1/2

sin 2(0/2) cos2 (0/2) I
where

IE(O)I sin 2 kdQ + 2 Q+1 1/2(25)F122Q2  I(5
L d j?

and where IF(0)I is normalized to unity in the forward direction (0 = 0

kn tl. first special case, where w, and W2 are two neighboring resonance frequencies,
it caa easily be shown that kdk = -r, so that Q = Xd/ 2 . Then IE(0)I is equal to unity, and
the source level and fa-field pressure distribution fur this half-wavelength SWAPS (HWS)
are given by

SHW/S = 7rjpoV 2 Q 2 kda2 /16 (26)

and

1 = --d s(r/2ins 01
~F()I sin 0 co (7r/4 sin/2)k(27)
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We assame that the first factor is nePrly equal to unity and plot the secon. factor in
Fig. 3. The far-field pressure distlibution becomes zero in the broadside direction, similar
to the far-field pressure distribution of a linear dipole. The 3-dB-down points occur at
0 = 530 and 0 = 1270. Complete nulls occur in this pattern because the two oppositely
directed waves in the virtual-source density produce complete cancellation over a half
wavelength. If SWAPS contained a liquid with a scund speed less than that of water,
then the length of the tube would be less than a half wavelength in water and the cancella-
tion would be incomplete. This liquid should also have a density that is correspondingly
laLver than that of water, so that tl:-chara .teristic impedances would be nearly equal and
the effect of the bound~ry between the two liquids would be minimized. This impedance
match coupled with the small acoustical size of SWAPS at the difference frequency should
allow the far field to be calculated as if SWAPP were filled with water insofar as the phase
terms are concerned. Of course the quantities .. co, and P appearing in the amplitude
of f should be evaluated for the actual liquid in SWAPS. For exampie, if the liquid in
SWAPS were similar to carbon tetrachloride with a sound speed of 105 centimeC%, per
second and a density of 1.5 grams per cubic centimeter, the far-field pressure distribution
calculated using Eq. (24) would be nearly omnidirectional with only 1/2 dB difference
between the maxima at 00 and 1800 ad'A the minima at 900 d 2700.

The total power WHWS radiated at the difference frequency by the half-wavelength
SWAPS is obtained by numerical integration of IF(0)12 with Gaussian quadrature. The
result is

S
2

1.64-,T IVS (28)WHI s " 2p 0 c(

340 , bU - 1 0 0 0

330 V 30
°

3200 40*

,3O °  50*

3000

2900 70*

270' 90
°

2600 1000

250* 1I00

2400 120"

230 ,30*

220' 140°

210* 1500

1900 180- 1700

Fig. 3 - Far-field pressure distribution for

the half-wavelength SWAPS

ko
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Of perhaps more interest is the second special casc, where bath o, and w 2 he witl in
the bandwidth of a sing'e resonance of the standig-wave system. In this case the length
of SWAPS is nearly equal to

S=( 2m 4 1) (2! ,)

where in is an integer and X is the wavelength in SWAPS at either primary frequency.
Consequently Q can be considerably shorter than a half wavelength at the difference
frequency to take advantage of tha fact that S depends on Q2 k. Thus if Q2 increases
f,4sti than 1/.Q as Q is decreased to values '-cresponding to smaller integer values for in,
there will bE an overall increase in S. For small-amplitude waves '. is seen from Eq. (12)
that Q2 9 inc -eases nearly as 1/Q. For large-amplitud, waves, Q"2 should also increase as
the length is decreased from that of a half-wavelength SWAPS. At some optimum length,
however, increased nonlinear losses possible cavitation, and heating effects will cause Q2 k
to begin to decrease.

For th~s short SWAPS (SS), the far-tield pressure distribution predicted by Eq. (24) is
omnidirectional, and the source level and radiated power are given by

SSS = rp 0 V2Q2k~a2 /8, (30)

and

Wss - 24rc 0 .  (31)
2poc0 '

To get some feeling for these expressions, we compare the results for the short SWAPS
to those obtained by Westervelt for TWAPS, although we recognize that SWAPS and TWAPS
are designed for different applications. For simplicity we assume that TWAPS is operating
with the same piston velocity as SWAPS. The source level and radiate.2 power calculated
by Westervelt are designated by ST, and WT, and w( use o' to represent the free-field
attenuation of the primaries in seawater. This attenuation coefficient should include con-
tributions from viscous attenuation, the generation of harmonics and other intermodulation
components, and diffraction. For the case wheie the short SWAPS is filled with water,
we have

SSS =Q2(yl(32

ST (32)ST

and

W--SS 2Q4 a'Q, lT. (33)WT

Thus the achievement of a source level comparable to that of TI'APS requires that Q 2 be
comparable to 1/&Q. We are nA predicting values for Q at the present time and emphasize
again that it is a parameter that must be experimentally determined as an input to this
mathematical model. The ratio of total radiated powers is much more favorable than the
ratio of source levels, since kd is expected to be much larger than a', so that
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WSS ISSS 2
W ( (33)

SUMMARY

We summarize some of the more important features of the -;tanding-wcve acoust'C
parametric source (SWAPS):

0 SWAP3 is designed to be a small, low-fxequency underwater sound soutce.

0 Two special modes of operation are available:

-The two primary frequencies afe neighboring resonance frequencies for the
standing-wave system in SWAPS. In this case the length of SWAPS is a half wavelength
at the difference frequency in the liquid in SWAPS.

-The two primary frequencies are both within the bandwidth of a single
resonance frequency for the standing-wave system in SWAPS. In this mode the length
of SWAPS is nearly equal to an odd number of quarter wavelengths at either primary
frequency in the liquid in SWAPS and thus can be considerably shorter than the half-
wavelength SWAPS.

* SWAPS is expected to be a more effective radiator of difference frequency than
a traveling wave acoustic parametric source (TWAPS) because (a) high-energy density and,
consequently, increased nonlinear conversion is achieved by simultaneous resonance or
near resonance of the two primary signals and (b) competing nonlinear interactions such
as the generation of harmonics of the primaries and the generation of the sum frequency
are inhibited by the pressure-release reflector.

Since SWAPS is short acoustically at the difference frequency, it will not have the
high directivity associated with TWAPS. Instead SWAPS is intended for applications that
require an omnidirectional or perhaps a dipolar far-field pressure distribution. If directivity
is desired, an array of SWAPS sources can be used. The frequently encountered acoustic
interaction problem inherent with an array of small conventional sources should not occur
here because the piston which pro duces 'he high-frequency primary vaves in a SWAPS
source will not be affected appreciably by the low-frequency difference-frequency radiation
from neighboring SWAPS sources The high-frequency primary waves are contained within
the SWAPS sources and therefore cannot affect the piston in a neighboring SWAPS source.

o The liquid used in SWAPS can be chosen to optimize the performance. Some
important parameters to consider are soand speed, density, nonlinearity, attenuation
coeffcient, and cavitation strength.
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